

Seat	
No.	

M.Sc. – I (Semester – I) Examination, 2015 COMPUTER SCIENCE (New) Object Oriented Programming Using C++ (Paper – I)

Object Oriented Program	ming Using C++ (Paper – I)
Day and Date: Wednesday, 15-4-2015 Time: 11.00 a.m. to 2.00 p.m.	Total Marks : 70
,	nd 2 are compulsory . ee questions from Q. No. 3 to Q. No. 7 . ght indicate full marks.
1. A) Choose correct alternatives :	10
1) Which of the following header fi	le includes definition of cin and cout ?
A) istream.h	B) ostream.h
C) iomanip.h	D) iostream.h
2) Which of the following provides	a reuse mechanism?
A) Abstraction	B) Inheritance
C) Dynamic binding	D) Encapsulation
A constructor that accepts constructor.	parameters is called the default
A) one	B) two
C) three	D) no
4) Destructor has the same name	as the constructor and it is preceded by
A) ~	B)
C) ?	D) \$
5) Array indexing always starts wi	th the number
A) 1	B) 0
C) 2	D) -1

-2-

SLR-CP - 180

7

7

7

7

7

7

4. Answer the following:

A) Write a program in C++ to study parameterized constructor. 7

B) What is Template? Explain class template.

5. Answer the following:

A) Write a C++ program to implement single inheritance in which take 'STUDENT' as base class and derive the class named 'MARKS'. (Assume your own data/variables).

7 B) What do you mean by operator overloading? Explain with suitable example.

6. Answer the following:

A) What is virtual function? Explain characteristics of virtual functions. 7

B) Explain various concepts of Object Oriented Programming.

7. Answer the following:

A) Define a File. Explain I/O commands in file handling. 7

B) Explain call by reference and return by reference with example.

Seat No.

M.Sc. – I (Semester – I) (Computer Science) Examination, 2015 NUMERICAL ANALYSIS (New) (Paper – II)

Day and Date: Friday, 17-4-2015 Max. Marks: 70

Time: 11.00 a.m. to 2.00 p.m.

Instructions: 1) Q. No. 1 and Q. No. 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figures to the **right** indicate **full** marks.
- 4) Use of calculator is allowed.
- 1. A) True of false (one mark each):
 - i) Bisection method is used to find the complex root of the equation f(x) = 0.
 - ii) $\Delta = E + 1$.
 - iii) Lagrange's method is sued to find the interpolating polynomial.
 - iv) Euler's method is accurate than Euler's modified method.
 - B) Choose correct alternative (one marks each):
 - i) Which of the following is best approximation of $\frac{1}{3}$?
 - a) 0.30

b) 0.33

c) 0.34

- d) 0.003
- ii) Error in Simpson's $\frac{1}{3}$ rd rule is given by E = _____
 - a) $-\frac{1}{180} \text{ nh}^5 \text{y}^{\text{iv}} (\xi)$

b) $\frac{1}{180} \text{ nh}^5 \text{y}^{\text{iv}} (\xi)$

c) $-\frac{1}{180} h^5 y^{iv} (\xi)$

- d) $\frac{1}{180} h^5 y^{iv} (\xi)$
- iii) Rate of convergence of Newton Raphson method is _____
 - a) 1st order

b) 2nd order

c) 3rd order

d) 4th order

- iv) Power method is used to find _____
 - a) eigen value and corresponding eigen vector
 - b) eigen value only
 - c) largest eigen value and corresponding eigen vector
 - d) none
- v) If f(0) = 1, f(1) = 3, f(3) = 55 then the lagranges fundamental polynomial

a)
$$\frac{1}{3}(x^2-4x+3)$$

b)
$$(x^2 - 4x + 3)$$

c)
$$\frac{1}{32}(x^2-4x+3)$$

b)
$$(x^2 - 4x + 3)$$

d) $\frac{1}{3}(x^3 - 4x + 3)$

- C) Define the following (one marks each):
 - i) Central difference operator
 - ii) Shift Operator
 - iii) Averaging operator
 - iv) Newton's divided difference interpolation formula
 - v) Newton cotes general integration formula.
- 2. i) Define absolute, relative and percentage error.
 - ii) Find the missing term:

0	1	2	3	4
5	10	20	-	80

3

iii) Prove the:

a)
$$\mu\delta = \frac{1}{2}[\Delta + \nabla]$$

b)
$$\delta^2 = \Lambda - \nabla$$
.

4

iv) Construct the divided difference table for following data:

х	3	4	5	6	7
y=f(x)	13	21	31	43	57

7

6

8

- 3. i) Find a real root of the equation $x^3 4x 9 = 0$ by using bisection method.
 - ii) Use Gauss elimination method to solve

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$

- 4. i) Derive rate of convergence of secant method. 7
 - ii) Find y(2) from the following data using Lagrange's formula.

х	1	3	4	5
у	1	81	256	625

5. i) Reduce the matrix $A = -\begin{bmatrix} 1 & 3 & 4 \\ 3 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix}$ to the tridiagonal form using Householder's

method.

- ii) Evaluate $\int_{4}^{5.2} l$ nx dx by Simpson's $1/3^{rd}$ rule by dividing the given interval into 6 parts.
- 6. i) Find the largest eigen value and corresponding eigne vector of the matrix

$$A = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}.$$

ii) Explain Newton Raphson method.

- 7. i) Derive Newton's forward difference interpolation formula.
 - ii) Given $\frac{dy}{dx} = 1 + xy$, y(0) = 1 obtain the Taylor's series for y(x) and compute y(0.1) correct to four decimal places.

Seat	
No.	

M.Sc. (Computer Science) (Part – I) (Semester – I) Examination, 2015 Paper – III: SOFTWARE ENGINEERING (New)

Day and Date: Monday, 20-4-2015 Total Marks: 70

Time: 11.00 a.m. to 2.00 p.m.

Instructions: 1) Question No. 1 and 2 are compulsory.

- 2) Attempt any three questions from Q. No. 3 to Q. No. 7.
- 3) Figures to the **right** indicate **full** marks.

1.	A)	Choose	correct	alternative	
----	----	--------	---------	-------------	--

10

- 1) Which one is not a category of software metrics?
 - a) Product metrics

b) Process metrics

c) Project metrics

- d) People metrics
- 2) Testing the software is basically
 - a) Verification

- b) Validation
- c) Verification and validation
- d) None of the above
- 3) In object oriented software design inheritance is a kind of
 - a) relationship

b) module

c) testing

- d) optimization
- 4) Which of the following is not a part of data flow diagram?
 - a) Disk storage
 - b) Arrow
 - c) Data store
 - d) Process represented by bubble circle
- 5) Problem analysis is done during
 - a) System design phase
- b) System analysis phase
- c) Before system test
- d) All of these

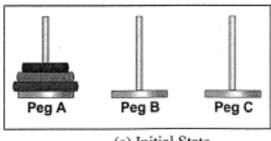
	6)	Design phase is followed by		
		a) Coding	b) Debugging	
		c) Testing	d) Maintenance	
	7)	A system design aid should primar	ily.	
		a) Help analyze both data and active	vities	
		b) Use graphical user interface		
		c) Generate code		
		d) Help in documentation		
	8)	is a black box tes	ting method.	
		a) Boundary value analysis	b) Basic path testing	
		c) Code validation analysis	d) None of the above	
	9)	Structured programming codes incl	ude	
		a) Sequencing	b) Alteration	
		c) Iteration	d) All of the above	
	10)	Which of the following is not one of	the software engineering layers?	
		a) Process	b) Tools	
		c) Methods	d) Manufacturing	
	B) Sta	ate true or false :		4
	1)	ERD stands for entity relationship d	esign.	
	2)	System development can cease after	er prototyping.	
	3)	Most software development projects	s are initiated to meet business need.	
	4)	Design pattern are not applicable to	the design of object oriented software.	
2.	A) Wı	rite short note on following :		8
	1)	Transaction mapping.		
	2)	Software engineering design proces	S.	
	B) An	swer the following :		6
	•	Explain testing fundamental in brief.		-
	•	Explain software product and proce		

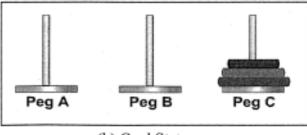
	<u> </u>	0 0 .	. • •
3.	Answer the following:		
	A) Explain rapid application development model in detail.		7
	B) Explain why there is a need for requirement analysis.		7
4.	Answer the following:		
	A) Explain various components used in requirement analysis.		7
	B) Why prototyping is used for requirement analysis? Explain with s example.	uitable	7
5.	Answer the following:		
	A) Explain the basic issues in software testing.		7
	B) Explain the various test case design.		7
6.	Answer the following:		
	A) Explain basic path testing and control structured testing in detail.		7
	B) Explain the various elements of an object oriented model.		7
7.	Answer the following:		
	A) Explain interface design and procedural design in detail.		7
	B) Explain the various strategies used for software design.		7

Seat	
No.	

M.Sc. (Computer Science) (Part – I) (Semester – I) Examination, 2015 DATA STRUCTURES (New) (Paper – IV)

	DATA STRUCTUR	RES (New) (Paper – IV)	
-	ate: Wednesday, 22-4-2015 00 a.m. to 2.00 p.m.		Max. Marks: 70
Ins	,	re compulsory questions. r ee questions from Q. 3 to Q. t indicate full marks.	7 .
1. A) Ch	oose the correct alternative :		10
1)	A determines to	ne set of values to which a cons	stant belongs,
	or which may be assumed by	a variable or an expression.	
	a) Sentence case	b) Tree	
	c) Data type	d) Software	
2)	A Priority queue may lead to a put the indefinite blocking state		ıt is nothing
	a) Fragmentation	b) Compaction	
	c) Data Hiding	d) Starvation	
3)	If non-zero elements are less in	n count, then such matrix is call	ed
	a) 4-Dimensional Matrix	b) 1-Dimensional Matrix	
	c) 2-Dimensional Matrix	d) Sparse Matrix	
4)	A cells, uses p	pointers to link successive list	elements.
	a) Matrix	b) Stack	
	c) Singly Linked	d) Tree	
5)	The key for a given object car	nbe calculated using a functio	n called a
	a) Skolem Function	b) Nested Function	
	c) Hash Function	d) Do While Loop	
6)	are used to org	ganize information in database acture of source programs in c	-
	a) Queue	b) Collision	
	c) Search	d) Tree	




		7)			elects that option which is "locally optimal" in some	
			pa	rticular sense.		
			a)	Preorder Traversa	I Algorithm	
			b)	Greedy Algorithms	S	
			c)	Depth First Search	n Algorithm	
			d)	None of these		
		8)			a linear data structure which can be accessed only	
					storing and retrieving data.	
			,	Queue	b) Abstract Data Type	
			•	Pipe	d) Stack	
		9)	is i		nmetic expression needs to be traversed and result or followed by the operand, then it's a	
			a)	Post-order	b) Pre-order	
			,	Ascending	d) Descending	
		10)	•	_	ure to solve a problem is called as	
		,		Data Structure	b) Problem Solver	
			•	Algorithm	d) Procedural Language	
	B)	Tru	ie c	or False :		4
	·	1)	Me	erge Sort is a good	example of backtracking algorithm.	
		-	of sub-problems to get a solution to a given problem sch and bound.			
		3)	us		d breadth-first because from each vertex ν that rches as broadly as possible by next visiting all to ν .	
		4)	An	array variable who	ose components are again arrays is called a matrix.	
2.	A)	Wr	ite a	a short note :		8
		1)	Da	ıta structure.		
		2)	Cir	cular Queue.		
	B)	An	swe	er the following :		6
	-	1)	WI	nat do you mean by	/ Primitive Data Type ?	
		•		efine the term Backt	• •	

3. Answer the following:

- A) Define term Doubly Linked List. State and explain in detail the various operations on Doubly Linked with suitable example.
- B) Discuss in detail how to satisfy the constraint to solve Tower of Hanoi problem having three disks and three pegs?

(a) Initial State

(b) Goal State

4. Answer the following:

A) Define the term Queue. Explain in detail insertion and deletion at Dequeue with suitable example.

7

B) What do you mean by Binary Tree? Construct a Binary tree from given series and show the results of Pre-order, In-order and Post-order traversing at constructed Binary tree.

7

Series: 39, 5, 43, 83, 66, 10, 8, 91, 26, 55, 3, 72, 100, 12, 60.

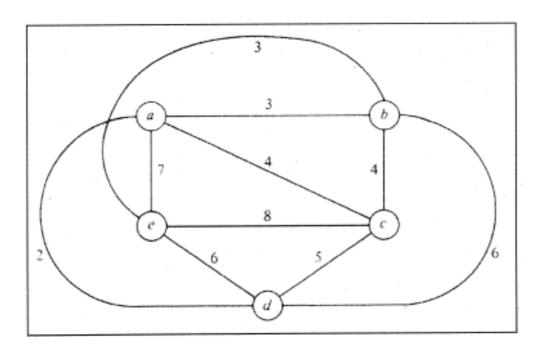
5. Answer the following:

A) Define the term sorting. Perform Insertion Sort and show the result in passes on following series :

Series: 56, 19, 200, 3, 10, 8, 193, 57, 33, 6, 51, 83, 28, 90, 319.

7

B) Define Array. Discuss representations and applications of single and multidimensional array with suitable example.


6. Answer the following:

A) Discuss Breadth and Depth First search as a classical tree traversing algorithm with suitable example.

7

B) State the Dijkstra's algorithm. Discuss how it will be useful for visiting all nodes shown in graph while visiting each node only once.

7

7. Answer the following:

A) State the algorithm for conversion of Infix into Post fix string. Apply the same on given infix expression show its conversion into post fix string.

Infix Expression: ((a + b) + c* (d + e) + f) * (g + h).

7

B) State the algorithm of Binary search and Linear search and also show the results of the both of the search on given series to find the digit 100 in it. **Series**: 6, 35, 98, 13, 89, 77, 55, 103, 613, 100, 19, 61.

SLR-CP - 184

Seat	
No.	

M.Sc. – I (Semester – I) Examination, 2015 COMPUTER SCIENCE (Old) Object Oriented Programming Using C++ (Paper – I)

	Object Oriented Programmin	g Using C++ (Paper	– I)
•	ate : Wednesday, 15-4-2015 00 a.m. to 2.00 p.m.		Total Marks: 70
Ins	tructions: 1) Question No. 1 and 2 2) Attempt any three qu 3) Figures to the right in	estions from Q. No. 3 to	Q. No. 7.
1. A) Ch	oose the correct alternatives :		10
1)	An object is		
	A) A variable of class data type		
	B) Same as a class		
	C) Just like a global variable		
	D) Collection of data-members and	member functions	
2)	Wrapping up of data and functions tog	ether in a class is known	as
	A) Overloading	B) Data Abstraction	
	C) Polymorphism	D) Encapsulation	
3)	Which of the following is not a type	of constructor?	
	A) Copy constructor	B) Friend constructor	
	C) Default constructor	D) Parameterized cons	structor
4)	The mechanism of deriving a new	class from base class	is known as
	A) Polymorphism	B) Encapsulation	
	C) Overloading	D) Inheritance	
5)	Which of the following can replace a	a simple if-else construc	t ?
•	A) Ternary operator	B) While loop	
	C) Do-while loop	D) For loop	

i) Explain the use of scope resolution operator with example.

ii) What do you mean by user defined data type? Explain in short.

Seat	
No.	

M.Sc. – I (Semester – I) Examination, 2015 COMPUTER SCIENCE

	(Рар		erical Analysis	s (Old)	
-	Date : Friday, 17-4 00 a.m. to 2.00 p			Max. Marks	: 70
Ins	iii) F	ttempt any thre igures to the rig	-	m Q. No. 3 to Q. No. 7 . marks.	
1. A) Se	elect most correct	alternative :			10
i)	The Newton-Raj		_	nonlinear equations falls	
	a) bracketing	b) graphical	c) open	d) random	
ii)	The number 0.00	0023 has	signific	ant digits.	
	a) 2	b) 3	c) 5	d) 6	
iii)	The truncation e with $h = 0.1$ is	rror in calculatir	ng $f'(1)$ for $f(x) = x$	2 by $f'(x) \approx \frac{f(x+h) - f(x)}{h}$	
	a) 0.1	b) -0.1	c) 0.2	d) -0.2	
iv)	A square matrix		_		
	a) $a_{ij} = 0, j > i$		b) $a_{ij} = 0, i > j$		
,	•		d) $a_{ij} \neq 0, i > j$		
v)	The finite differe	ence y ₁ – y ₀ , wh	here $y_i = f(x_i)$, is of	denoted by	
	a) Δy_0	b) ∇y_1	c) $\delta y_{1/2}$	d) all of these	

vi) The trapezoidal rule is a _____ point Newton-Cotes formula.

			a) three	b) four	c) one	d) two		
	١	vii)	$(y''')^2 + 5y' = 0$	is a	differential eq	uation.		
			a) first-degree, tl	nird-order	b) third-degree,	second-orde	r	
			c) third-degree,	first-order	d) second-degre	ee, third-orde	r	
	٧	iii)	Interpolation me	ans estimating	a value which lie	S		
			a) within the give	en range of argu	uments			
			b) outside the given	ven range of ar	guments			
			c) outside the ra	nge of the depe	endent variable			
			d) none of these					
		ix)	If $x_0 = 8$, $x_1 = 4$		= 10 then the firs	t divided diffe	erence	
			$f[x_0, x_1] = $		c) 5	d) 2.5		
		v١	a) 2The value of x th	•	•	•		
		^)			b) root of a func			
			•	` '	d) none of these	` '		
	B۱	Fil	in the blanks :		a) none or mode	,		4
	ری		A non-algebraic	equation is calle	ed a	equation		•
			The first phase of				elimination	
		,	phase.	addo ominin				
		iii)	The general solu	ition of the diffe	rential equation y	y' = 6x + 1 is		
		iv)	The Simpson's 1	/3 rule is	point Ne	ewton-cotes fo	ormula.	
2.	A)	i)	Define an absolu	ıte error.				
	,	-,			: 0.0556 ± 0.000	2		
				•	absolute error in			4
		ii)	Define the opera			_		4
	B)	-	State the theorer				not obtained	•
	ری	')	by the iteration m					3
		ii)	What is an order	of differential e	equations ?			3
		•						

3. A) Write an algorithm of finding the root of f(x) = 0 by Secant method.

7

B) Given the following information:

Х	1	3	5	7
y = f(x)	101	109	125	149

Find f(5.2) by using Newton's backward difference interpolation formula.

7

4. A) Explain Newton's forward difference interpolation formula.

7

B) Evaluate the integral $I = \int_{-3}^{3} (x^3 + 1) dx$ by using Simpson's $\frac{3}{8}$ rule with h = 1.

Verify your results by actual integration.

7

5. A) Describe Gauss elimination method.

7

B) Use Taylor series method to solve the equation

$$\frac{dy}{dx} = x^2 + y^2$$
 for x = 0.25 and x = 0.5 given y(0) = 1.

_

7

6. A) Describe Trapezoidal rule.

7

B) Solve the following system of equations by using LU-Decomposition method.

$$3x_1 + 6x_2 + x_3 = 16$$

 $x_1 + 3x_2 + 2x_3 = 9$

$$2x_1 + 4x_2 + 3x_3 = 13$$

7

7. A) Solve the following system of equations by using Gauss-Seidel method.

$$10x - 5y - 2z = 3$$

$$4x - 10y + 3z = -3$$

$$x + 6y + 10z = -3$$

7

B) Find the root of $x^3 - x - 1 = 0$ in the interval (1, 2) by using method of false position. Use at least 5 iterations.

Seat	
No.	

M.Sc.	(Part – I) (Semest Paper – III :	er – I) (Comp SOFTWARE		-		5
•	Date : Monday, 20-4-2 .00 a.m. to 2.00 p.m.	2015			Total Marks	: 70
Ins	· ·	tion No. 1 and 2 npt any 3 question es to the right in	ons	from Q. No. 3	to Q. No. 7 .	
1. A) Cl	noose correct alterna	tives :				10
i)	If every requirement SRS is	can be checked	by	a cost-effectiv	re process, then the	
	a) verifiable		b)	traceable		
	c) modifiable		d)	complete		
ii)	Modifying the softwar is called	re to match chan	ges	in the ever cha	anging environment	
	a) adaptive mainten	ance	b)	corrective ma	intenance	
	c) perfective mainte	nance	d)	preventive ma	aintenance	
iii)	All activities lying on	critical path hav	e s	lack time equa	al to	
	a) 0	b) 1	c)	2	d) None of above	
iv)	Alpha and Beta Test	ing are forms of				
	a) Acceptance testing	ng	b)	Integration te	sting	
	c) System testing		d)	Unit testing		
v)	An object encapsulat	tes				
	a) Data		b)	Behaviour		
	c) State		d)	Both data and	d behaviour	
vi)	In function point ana to rate the system ar	-	gei	neral system o	haracteristics used	
	a) 10	b) 14	c)	20	d) 12	

	vii)	Aggregation represen	nts				
		a) is_a relationship		b)	part_of relation	onship	
		c) composed_of rela	ationship	d)	none of above	e	
	viii)	Number of clauses u requirements are	ised in ISO 9001	to	specify quality	/ system	
		a) 15	b) 20	c)	25	d) 28	
	ix)	ER model shows the					
		a) Static view		b)	Functional vie	ew .	
		c) Dynamic view		d)	All the above		
	x)	The tools that suppo are called	rt different stage	es c	of software dev	velopment life cycle	
		a) CASE tools		b)	CAME tools		
		c) CAQE tools		d)	CARE tools		
	B) Fi	ll in the blanks or Tru	e / False :				4
	i)	In the context of requi of data, function, or b	•	s, pa	artitioning resu	lts in the elaboration	
		A) True	B) False				
	ii)	Units and stubs are tested independently		ınit	testing becau	se the modules are	
		A) True	B) False				
	iii)	The software metrics or technical goals an	•	_			
		A) True	B) False				
	iv)	The goal of quality as needed to determine defects.	<u>.</u>		•		
		A) True	B) False				
2.	A) W	rite short notes on the	e following :				8
	i)	Architectural Design	Optimization				
	ii)	Software Quality Ass	surance.				
	B) Ar	nswer the following :					6
	•	What is Engineering	Design Process	?			
	-	Enlist various Design	_				
	,		3.I2.2.2.				

3.	Answer the following:	14
	A) Explain Software Cost Estimation in detail.	
	B) Explain the Modular Design with necessary diagrams.	
4.	Answer the following:	14
	A) What is Software Prototyping? Explain the prototyping approaches in software process?	
	B) What is Analysis Concept ? Explain its principles.	
5.	Answer the following:	14
	A) Explain in brief elements of Analysis Model.	
	B) Discuss in brief the Interface design.	
6.	Answer the following:	14
	A) Explain Unit Testing and Structural Testing in detail.	
	B) Explain Software Cost Estimation in detail.	
7.	Answer the following:	14
	A) Explain in brief Management of object-oriented software projects.	
	B) Discuss in brief characteristics and Components of Software.	

Seat	
No.	

M.Sc. (Part – I) (Semester – I) Examination, 2015 COMPUTER SCIENCE

		/ : Data Structures (Old)	
-	Oate : Wednesday, 22-4-2 00 a.m. to 2.00 p.m.	015 Max. Mark	ks : 70
Ins	2) Attempt a	No. 1 and 2 are compulsory. ny three questions from Q. No. 3 to Q. No. 7. o right indicate full marks.	
1. A) Ch	noose the correct alternat	ives:	10
1)	Two dimensional arrays	are also called	
	a) Matrix arrays	b) Merged array	
	c) One dimensional arra	d) None of above	
2)		be inserted into a data structure, but there is a ation is usually called	no
	a) underflow	b) saturated	
	c) houseful	d) overflow	
3)	A data structure where of but not in the middle.	elements can be added or removed at either er	nd
	a) Linked lists	b) Stacks	
	c) Queues	d) Deque	
4)	Which of the following c	ase does not exist in complexity theory?	
	a) Best case	b) Null case	
	c) Average case	d) Worst case	
5)	Finding the location of the	e element with a given value is	
	a) Insertion	b) Search	
	c) Sort	d) None of above	

	6)	Which data structure allows deleat rear?	ting data elements from front and inserting	
		a) Stacks	b) Queues	
		c) Binary search tree	d) Sort	
	7)	To represent hierarchical relative structure is suitable?	tionship between elements, which data	
		a) Deque	b) Priority	
		c) Tree	d) All of above	
	8)	The term data structure refers to between them.	and interrelationship	
		a) Coding standards	b) Programming language statements	
		c) Organization of the data	d) None of these	
	9)	What is the linked list that conta of the location of the other node	ins a variable whose value is the address in the list?	
		a) Integer	b) Pointer	
		c) Char	b) Void	
	10)	A "stack" is also known as wha	t?	
		a) A FIFO	b) A LIFO	
		c) A Queue	d) A Linked List	
	B) St	ate whether True or False :		4
	1)	A linked list is either empty structured children, a left child, right child	cture or in which every node has either no or both a left and a right child.	
	2)	The Insertion sort is also known	as pushdown list.	
	3)	Priority queue is nothing but the	double ended queue.	
	4)	In Sparse Matrix, almost all its	elements are zero.	
2.	A) W	rite short notes on following :		8
	1)	Array		
	2)	Backtracking.		

-2-

SLR-CP-187

B) Answer the following:

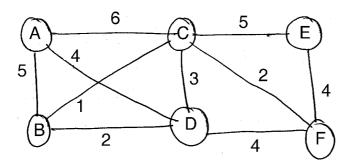
6

7

7

7

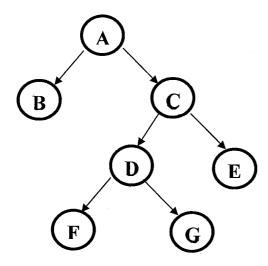
- i) Explain in brief the different data type.
- ii) What do you mean by recursion?
- 3. Answer the following:
 - A) Define tree. Construct binary search tree of following series. Justify your answer.


Series: 13, 3, 4, 12, 14, 10, 5, 1, 8, 2, 7, 9, 11, 6 and 18.

- B) What do you mean by Queue ? Discuss various operations on it with suitable example.
- 4. Answer the following:
 - A) Define Algorithm. Discuss problem of Tower of Hanoi by considering three peg having three discs to be moved all from one peg to another.
 - B) Define doubly linked list. Discuss the insertion operation on it by inserting data at the beginning, middle and end of list with suitable example.7
- 5. Answer the following:
 - A) State the principle of conversion from infix to postfix polish notation. Convert following expression from infix to postfix using stack.

Infix String : $A^*((B + C) - (D/E)) + F$.

7


B) Discuss working of Greedy search on following graph. Justify your answer. 7

7

6. Answer the following:

- A) Define Data Structure. Explain the complexity of an algorithm in detail.
- B) What do you mean by traversing? From the following binary tree, state the result of pre-order and post-order traversal.

7. Answer the following:

- A) What do you mean by sorting? Perform Bubble sort on following series: **7** Series: 63, 25, 1,80, 37, 92, 45, 77, 105, 59.
- B) Define Stack. Discuss its principle, various operations and its applications. 7

Seat	
No.	

	IVI.SC.	COMPUTER SO	CÍENCE (Pa	per - V)	
-	ate : Thurso 00 a.m. to 2	day, 16-4-2015	rogramminç		arks : 70
Ins	tructions:	1) Question No. 1 a 2) Attempt any 3 a 3) Figures to the r	questions from	Q. No. 3 to Q. No. 7 .	
1. A) Ch	oose correc	ct alternatives :			10
1)		e correct ordering for d in a single file?	the import, cla	ass and package declarat	ions
	a) packag	e, import, class	b) class, im	port, package	
	c) import,	package, class	d) package	, class, import	
2)		_is an abstract comp	outer which rui	າs the compiled Java proເ	grams.
	a) Javac	b) Javadoc	c) Javap	d) JVM	
3)		and e of applet.	are	executed only once during	9
	a) paint()	and destroy()	b) init() and	d start()	
	c) init() a	nd destroy()	d) start() a	nd stop()	
4)	What is the	e output of the follow	ving program	?	
	public clas	ss test {			
	pub	olic static void main	(String arg[])		
		double $x = 10$;			
		int r;			
		r = (int) (++x)%2			
		System.out.prin	t(r);		
		}			
	}				
	a) 0	h) 2	c) 22	d) 11	

		5)	What is th	e defa	ault	containe	layou	ut for Applet '	?	
			a) FlowLa	ayout			b)	CardLayout		
			c) Border	Layou	ıt		d)	GridLayout		
		6)	Which of t	he fol	lowi	ng is not	valid	Java floating	point literal (?
			a) 4.5f		b)	.033D	c)	5.0e^2	d) 6.8	
		7)	-					nt, float, long lata types ?	ı, then whole	expression
			a) long		b)	int	c)	double	d) float	
		8)		_ is a	t the	top of th	e exc	eption class	hierarchy.	
			a) try				b)	throwable		
			c) except	ion cla	ass		d)	catch		
		9)	In Java th	read to	o thr	ead com	munic	cation is calle	d	-
			a) passing	g	b)	sending	c)	messaging	d) calling	
		10)	Java is de	signe	d fo	ſ	6	environment	of the interne	t.
			a) develo	pment	<u> </u>		b)	deducting		
			c) distribu	uted			d)	web design		
	B)	Wr	ite whethe	r true	or f a	alse:				4
		1)	A final valu	ue car	nnot	be upda	ted.			
		2)	ClassNotF	-ound	Exc	<i>eption</i> is t	hrowr	by the <i>read(</i>)method of Ir	nputStream class.
		3)	A user car	nnot o	veri	ride statio	meth	nods in Java.		
		4)	A class m	ay imp	olen	nent a nu	mber	of Interfaces		
2.	A)	Wr	ite short no	otes o	n the	e followin	a :			8
	,		Abstract C				9			
		,	<i>Super</i> key							
	D)	ĺ								
	B)		swer the fo							6
		,	Describe				_			•
		II)	what is th	e diffe	eren	ce betwe	en Ex	ception and	Error in Java	?

3.	Answer the following:	
	a) Explain the concept of inheritance. How a class is inherited in Java?	6
	b) A library charges a fine for every book returned late. For first 5 days the fine is 50 paise, for 6-10 days fine is one rupee and above 10 days fine is 5 rupees. If you return the book after 30 days your membership will be cancelled. Write a program to accept the number of days the member is late to return the book and display the fine or the appropriate message.	8
4.	Answer the following:	
	a) Describe how radio button is put on applet? Describe how an event generated by a radio button is handled?	7
	b) What is applet? Describe how to create and execute an applet.	7
5.	Answer the following:	
	a) What is an array? With example describe how one and two dimensional arrays are created in Java.	8
	b) How to define abstract methods? What is difference between ordinary and abstract method?	6
6.	Answer the following:	
	 a) If a five-digit number is input through the keyboard, write a program to print a new number by adding one to each of its digits. For example if the number that is input is 12391 then the output should be displayed as 23402. 	6
	b) Explain various kinds of streams in Java.	8
7.	Answer the following:	
	a) What is the importance of finally block in exception handling? How does finally block differ from finalize() method?	, 7
	b) Explain different ways of creating a thread.	7

SLR-CP - 189

Seat	
No.	

M.Sc. – I (Semester – II) (Computer Science) Examination, 2015

Рар	er – VI : COMPUTER COMI	MUNICATION NETWORK (New)	
-	ate : Saturday, 18-4-2015 00 a.m. to 2.00 p.m.	Max. Marks	: 70
Instr	cuctions : 1) Question No. 1 and 2) Attempt any 3 question 3) Figures to the righ t	stions from Q. No. 3 to Q. No. 7 .	
1. A) Cho	oose correct alternatives :		10
1)	Networks in a older, unwired buil	dings is	
	a) Wireless and mobile	b) Wired and mobile	
	c) Wireless and non-mobile	d) Wired and non-mobile	
2)	Based on the interprocessor distate to larger distance?	ance which of the following is in smaller	
	a) PAN, LAN, MAN, WAN	b) LAN, PAN, MAN, WAN	
	c) LAN, PAN, WAN, MAN	d) PAN, LAN, WAN, MAN	
3)	Three army problem in network la	ayer may arise during	
	a) Connection establishment	b) Connection release	
	c) Data transfer	d) All above	
4)	Which of the following statement procedure call?	is false with reference to remote	
	b) Client procedure and client st	n be passed between client and server ud will be in same address space ure call which look as much as possible	
	d) In an RPC the reply from serve arrived	er takes same path in which the call has	
5)	ADCCP stands for		
	a) Advanced Data Communication	on Control Procedure	
	b) Auto Data Communication Co	ntrol Procedure	

c) Advance Data Control and Communication Procedure

d) Auto Data Control and Communication Procedure

SLR-CP - 189

-2-

6)	The minimum size of the point-to-point field, is	nt protocol frame, excluding payload				
	a) 5 bytes	b) 7 bytes				
	c) 9 bytes	d) 10 bytes				
7)	In TCP congestion is caused					
	a) At source	b) In network				
	c) At destination	d) At any where among the above				
8)	The main objective of transactional T	CP is				
	a) To increase transaction between	client and server				
	b) To reduce the number of packets transaction	between client and server for any				
	c) To reduce the errors and packet le client and server	oss during transactions between				
	d) To have secure communication for server	or transaction between client and				
9)	Which of the following is not a field in	the resource records?				
	a) Value	b) Domain name				
	c) Version	d) Class				
10)	For email services after establishme goes through the following sequence	•				
	a) Authorization, Transactions, Upda	ate				
	b) Authorization, Transactions, Disc	onnection				
	c) Connection, Transactions, Discor	nection				
	d) Connection, Transactions, Update	9				
B) Fill	in the blanks :		4			
1)	G2C stands for					
2)	For congestion control in datagram updated as per the equation	-				
3)	ADSL means					
4)	4) Web does not need login to access. This property of web is called					

Seat	
No.	

M.Sc. – I (Semester – II) (Computer Science) (New) Examination, 2015 Paper – VII: UML

Day and Date: Tuesday, 21-4-2015 Total Marks: 70

Time: 11.00 a.m. to 2.00 p.m.

Instructions: 1) Question No.1 and 2 are compulsory.

- 2) Attempt any 3 questions from Q. No. 3 to Q.No.7.
- 3) Figures to the **right** indicate **full** marks.
- 1. A) Choose correct alternatives.

- 1) UML interfaces are used to
 - a) Define an API for all classes.
 - b) Program in Java, but not in C++ or Smalltalk
 - c) Define executable logic to reuse across classes
 - d) Specify required services for types of objects
- 2) Which of the following statement is true about visibility?
 - a) UML uses # for public element
 - b) UML uses-for private element
 - c) UML uses * for protected element
 - d) All of the above
- 3) Which statement is true?
 - a) The UML is a development process for software intensive systems.
 - b) The UML is a process-dependent language used for visualizing software artifacts.
 - c) The UML is a modeling language for software blueprints.
 - d) The UML is a visual programming language.

- 4) Which statement is true about attributes?
 - a) They cannot change once the object is instantiated
 - b) They change value from object to object of the same class
 - c) They can only be primitives
 - d) They are required for every class
- 5) Which view focuses on the physical realization of the system?
 - a) Logical View

b) Implementation View

c) Process View

- d) Use-Case View
- 6) A state chart diagram describes
 - a) Attributes of objects
 - b) Nodes of the system
 - c) Operations executed on a thread
 - d) Events triggered by an object
- 7) The sequence diagram models
 - a) The order in which the class diagram is constructed
 - b) The way in which objects communicate
 - c) The relationship between states
 - d) The components of the system
- 8) The activity diagram
 - a) Focuses on flows driven by internal processing
 - b) Models the external events stimulating one object
 - c) Focuses on the transitions between states of a particular object
 - d) Models the interaction between objects
- 9) Which among these are the notations which are used to represent software architecture?
 - a) UML activity diagram
 - b) UML use case diagram
 - c) UML class diagram, interaction diagram
 - d) All of the mentioned

- 10) If you need to show the physical relationship between software components and the hardware in the delivered system, which diagram can you use?
 - a) Component diagram
- b) Deployment diagram

c) Class diagram

- d) Network diagram
- B) Write whether true or false.

4

- 1) An actor is a role a user plays with respect to the system.
- 2) In sequence diagram object deletion, indicated by a large X.
- 3) Package is a grouping mechanism that can be applied to classes only.
- 4) A guard is a logical condition that will return either "true" or "false".
- 2. A) Write short notes on the following:

8

- i) Grouping and Annotational things
- ii) Association.
- B) Answer the following:

6

i) Consider the program fragment given below.

```
Class Student {
    public int roll = 100;
    public String name = "Ajay";
    private mark1 = 65;
    private mark2 = 35;
    public void display ();
    public int result ();
}
```

Draw the UML notation of Student class

- ii) What are the advantages of using UML?
- 3. Answer the following:
 - a) Explain UML Software Development Life Cycle.

7

b) By using classes one can model the vocabulary of a system. What are the steps used to model the vocabulary of a system. Draw a figure showing the vocabulary of *Library System of a college*.

SLR-CP - 191

Seat	
No.	

M.Sc. - I (Semester - II) (New) Examination, 2015

		TER SCIENCE (Paper – VIII)	,	
Day and Date: Thurs Time: 11.00 a.m. to	•		Max. Marks	: 70
N.B. :	 Question No. 1 Attempt any 3 Figures to the I 	questions from Q.	No. 3 to Q. No. 7 .	
1. A) Choose corre	ect alternatives :			10
•	set that does, not h	ave sufficient attri	butes to form a primary	
a) Strong	entity set	b) Weak entit	ty set	
c) Simple	entity set	d) Primary e	ntity set	
2) Which no design?	rmal form is conside	ered adequate for I	relational database	
a) 2 NF	b) 3 NF	c) 4 NF	d) BCNF	
3) When sev to be ?	veral users access	the database at th	e same time, it is said	
a) Concu	rrent storing	b) Connection	n trap	
c) Databa	ase management	d) Integrated	data	
4) A locked	file can be			
a) Access	sed by only our use	r		
b) Modifie	ed by users with the	correct password		
c) Is used	d to hide sensitive ir	nformation		
d) Both b)) and c)			
5) The datab	oase schema is writ	ten in		
a) HLL	b) DML	c) DDL	d) DCL	

6)	6) In a relational model relations are termed as					
	a) Tuples	I	b)	Attributes		
	c) Tables	(d)	Rows		
7)) A	ensures that t	trar	nsactions execute	atomically.	
	a) Integrity con	trol algorithm				
	b) Local applica	ations				
	c) Concurrency	control algorithm				
	d) None of the a	above				
8)		refers to a form tables in a relatior			mining which fields	
	a) Normalizatio	n I	b)	De-normalization		
	c) Aggregation	(d)	None of these		
9)) The statement	in sql which allows	s to	change the defin	ition of a table is	
	a) Alter	b) Update	c)	Create	d) Select	
10)) The Data Contr	ol Language (DCL)	_)			
	a) Is used to m	anage user access	s to	databases		
	b) Is used to ma	anipulate the conte	ents	s of a database in	some form	
	c) Both a) and	b)				
	d) None of the a	above				
B) St	ate True/False :					4
1)) Database does	s, not removes data	a re	dundancy and inc	onsistency.	
2)) Cardinality of a	relation refers to n	num	nber of columns in	a table or relation.	
3)		ew determines how we unit in the compu			ally stored in some	
4)) A candidate ke	y which is not a pri	rima	ary key is known a	as alternate key.	

2.	A) Write short notes on the following:	8
	i) Data replication	
	ii) Two phase commit protocol.	
	B) Answer the following:	6
	i) Explain Data definition language with example.	
	ii) Explain order by and group by clause with example.	
3.	Answer the following:	
	A) Define DBMS. Explain three level architecture proposal for DBMS.	7
	B) Define Data Model. Explain Entity Relationship model and relational model.	7
4.	Answer the following:	
	A) What is meant by Normalization? Explain 4 NF and 5 NF with suitable example.	7
	B) Explain aggregate functions used in SQL.	7
5.	Answer the following:	
	A) What is meant by Transaction Management? Explain various transaction states.	7
	B) Explain the concept of Data Fragmentation with suitable example.	7
6.	Answer the following:	
	A) Explain advantages of optimization in query processing.	7
	B) What is meant by database recovery? Explain the need for recovery.	7
7.	Answer the following: A) What is meant by views in SQL? Explain how we can create views in SQL. B) Explain the concept of shadowing in database recovery.	7 7
	· · · · · · · · · · · · · · · · · · ·	

Seat	
No.	

M.Sc. – I (Semester – II) Examination, 2015 COMPUTER SCIENCE (Old) Operations Research (Paper – V)

Day and Date: Thursday, 16-4-2015 Max.Marks: 70

Time: 11.00 a.m. to 2.00 p.m.

- N.B.: 1) Attempt any five questions.
 - 2) Q. No. 1 and Q. No. 2 are compulsory.
 - 3) Attempt any three from Q. No. 3 to Q. No. 7.
 - 4) Figures to the right indicate full marks.

1)	The set of all convex combinations	of sets of points from X i	S
2)	The payoff (V _{rs}) at the saddle point of game.	(r, s) is called the	
3)	A simplex in one dimension is a		
4)	If the primal problem has an unbour problem has solu	•	e dual
5)	The criteria of leaving vector ensure while the criteria for entering vector condition.		
6)	A basic feasible solution is said to be variables are an	_	
7)	Gomory's cutting plane method is us programming problem.	sed for solving	

B) Choose the correct alternative (**one** mark **each**):

		1)	If x _j s are feasible	solutions to LPP	then,		
			a) $x_{j} > 0$	b) $x_j \ge 0$	c) $x_j = 0$	d) $x_j \leq 0$	
		2)	The equation of h	yperplane in R ⁿ is			
			a) CX ≤ Z		b) $CX \ge Z$		
			c) $CX = Z$		d) Any one of the	se	
		3)	If i th constraint in dual variable is _	-	an equality then the	e corresponding i th	
			a) restricted to le	ess than zero			
			b) restricted to g	reater than zero			
			c) unrestricted in	n sign			
			d) none of these				
		4)	Consider two state	tements			
			I) Every Feasibl	e solution to LPP	is also a solution.		
			II) Every solution	n to LPP is Feasib	le solution.		
			a) only I is true		b) only II is true		
			c) both are true		d) both are false		
	C)	Sta	ate true or false (c	one mark each):			3
		1)	In a convex set the the set.	e line joining any t	wo points in the set	lies entirely in side	
		2)	An extreme point	always lies in bet	ween any other two	points of a set.	
		3)	In dual simplex m	ethod if $z_j - c_j < 0$	the method is not a	applicable.	
2.	a)	Wł	nat are the disadva	antages of Big-M n	nethod over two pha	ase method ?	3
	b)	Fo	r any points X, Y e	∈ R ⁿ show that the	e line [X : Y] is a co	nvex set.	4
	c)	De	fine :				
		i)	Slack variable				
		ii)	Surplus variable				
		-	strate each definit	ion with an examp	ole.		4
				·			

3

7

7

7

d) Find the dual of the following LP problem

Min. $z = x_1 + x_2 + x_3$

Subject to the constraints,

$$x_1 - 3x_2 + 4x_3 = 5$$

$$x_1 - 2x_2 \le 3$$

$$2x_2 - x_3 \ge 4$$

 $x_1, x_2 \ge 0$ and x_3 is unrestricted.

- 3. a) If the convex set of the feasible solutions of AX = b, b ≥ 0 is convex polyhedron then prove that atleast one of the extreme points gives an optimal solution. Further if the solution occurs at more than one extreme point then the value of objective function will be the same for all convex combinations of these extreme points.
 - b) Solve the problem by Two phase method:

Min.
$$z = x_1 + x_2$$

Subject to the constraints,

$$2x_1 + x_2 \ge 4$$

$$x_1 + 7x_2 \ge 7$$

and
$$x_1, x_2 \ge 0$$
.

- 4. a) If the kth constraint of the primal is an equality then P.T. the dual variable w_k is unrestricted in sign.
 - b) Solve the following LPP by Dual Simplex Method:

Max
$$z = -2x_1 - x_3$$

Subject to the constraints,

$$x_1 + x_2 - x_3 \ge 5$$

$$x_1 - 2x_2 + 4x_3 \ge 8$$
 and $x_1, x_2, x_3 \ge 0$.

5. a) Explain the construction of Gomorian constraint used in Gomory's method to solve integer programming problem.

7

b) Give the computational procedure of Beale's method to solve quadratic programming problem.

7

6. a) Explain the algorithm used for solving linear programming problem by simplex method.

7

b) Solve the following integer programming problem:

7

Max
$$z = x_1 + 4x_2$$

Subject to the constraints

$$2x_1 + 4x_2 \le 7$$

$$5x_1 + 3x_2 \le 15$$

and $x_1, x_2 \ge 0$ and integers.

7. a) Solve the following 2 x 3 game graphically.

8

b) Define the terms:

6

- i) Saddle point
- ii) Optimal strategies
- iii) Value of game.

SLR-CP - 193

Seat	
No.	

M.Sc. – I (Semester – II) (Computer Science) Examination, 2015 Paper – VI: COMPUTER COMMUNICATION NETWORK (Old)

Day and Date : Saturday, 18-4-2015 Total Marks : 70

Time: 11.00 a.m. to 2.00 p.m.

Instructions: 1) Question No. 1 and 2 are compulsory.

- 2) Attempt any 3 questions from Q. No. 3 to Q. No. 7.
- 3) Figures to the **right** indicate **full** marks.
- 1. A) Choose correct alternatives:

- 1) Networks in older, unwired building are
 - a) neither mobile nor wireless
 - b) mobile but not wireless
 - c) not mobile but wireless
 - d) mobile as well as wireless
- 2) In a virtual circuit subnet quality of service is
 - a) difficult to implement
 - b) easy if enough resource is allocated
 - c) dependent on the subnet architecture
 - d) all the above
- 3) In selective flooding algorithm router forwards
 - a) selected packets further
 - b) non-duplicates packets only
 - c) towards best known path only
 - d) packets to only those lines that are going in right direction
- 4) The IP address 221.15.175.5 belongs to class
 - a) A

- b) B
- c) C
- d) D
- 5) In Berkeley sockets BIND primitive is used for
 - a) creating a new communication end point
 - b) attach a local address to a socket
 - c) block the caller until a connection attempt arrives
 - d) announce willingness to accept connections

6)	Th	e TCP port number 80, which is ht	tp, is used for	
	a)	hyper text transfer	b) e-mail	
	c)	world wide web	d) all the above	
7)	Wł	nich one of the following protocol de	livers/stores mail to receiver server?	
	a)	simple mail transfer protocol		
	b)	post office protocol		
	c)	internet mail access protocol		
	d)	hypertext transfer protocol		
8)	Th	e OSI Reference Model layers, in o	order from top to bottom, are	
	a)	Application, Physical, Session, To Presentation	ransport, Network, Data Link,	
	b)	Application, Presentation, Network Physical	rk, Session, Transport, Data Link,	
	c)	Physical, Data Link, Network, Tra Application	Insport, Session, Presentation,	
	d)	Application, Presentation, Sessio Physical	n, Transport, Network, Data Link,	
9)	In a	asymmetric key cryptography, the	private key is kept by	
	a)	sender		
	b)	receiver		
	c)	sender and receiver		
	d)	all the connected devices to the n	etwork	
10)	Wł	nat is Data Encryption Standard (D	ES) ?	
	•	bit cipher	b) stream cipher	
	c)	block cipher	d) code cipher	
B) Fi	ll in	the blanks or True/False :		4
1)	Ma	aximum payload of ATM cells is	bytes.	
2)		· · ·	essage to a remote host and getting a ion call in a programming language.	
3)	Ta	bles were introduced in HTML		
4)	Th	e first public-key algorithm develop algorithm.	ed by Merkle and Hellman in 1978 is	

2.	A) Write short notes on the following:	8
	i) IPV6	
	ii) Transactional TCP.	
	B) Answer the following:	6
	i) Discuss advantages and disadvantages of flooding algorithm.	
	ii) Explain transposition cipher with example.	
3.	Answer the following:	14
	 A) Explain connection oriented and connectionless services. Give their comparison. 	
	B) What is token bucket algorithm? How it works? Explain.	
4.	Answer the following:	14
	A) Discuss hierarchical routing with an example.	
	B) How interior gateway routing protocol functions? Explain.	
5.	Answer the following:	14
	A) Discuss the issues related to connection establishment in transport layer.	
	B) Describe real time transport protocol.	
6.	Answer the following:	14
	A) Discuss email architecture and services.	
	B) Write a note on i-mode system.	
7.	Answer the following:	14
	A) What are the fundamental cryptographic principles? Discuss them.	
	B) How message digests differ from public key signatures? How message digests work? Explain.	

Seat	
No.	

M.Sc. – I (Sem. – II) (Computer Science) Examination, 2015 UML (Old) (Paper – VII)

Day and Date: Tuesday, 21-4-2015 Total Marks: 70

Time: 11.00 a.m. to 2.00 p.m.

Instructions: 1) Question No. 1 and 2 are compulsory.

- 2) Attempt any 3 questions from Q. No. 3 to Q. No. 7.
- 3) Figures to the **right** indicate **full** marks.
- 1. A) Choose correct alternatives:

10

1) An architect looks at two classes

The first class has the following operations:

getName(),getSize(),getTotal(), and findAverage().

The second class has the following operations:

getName(), getSize(), findAverage(), findMinimum(), and findMaximum().

The two classes share the same superclass. Which operations are most likely contained in the superclass?

- a) getName(), getSize(), and findAverage()
- b) findMaximum(), findMinimum(), getSize(), and getTotal()
- c) getName(), findAverage(), and findMaximum()
- d) getName(), getSize(), getTotal(), and findAverage()
- 2) Which of the following is a named object in UML?
 - a) Matt:Employee

b) Employee

c) Matt::Employee

d) ::employee

- 3) Which of the following three processes are best suited for UML?
 - i) use-case driven
 - ii) waterfall development-based
 - iii) iterative and incremental
 - iv) architecture-centric
 - a) i, ii and iii b) i, iii and iv c) ii, iii and iv d) i, ii and iv

B)

4)	Package diagrams are designed for a) organizing a large project into components b) depicting the overall structure of a system c) assisting testing d) assisting deployment							
5)	"Protected" visi							
	a) &	•						
6)	is			synchro	nous	stimulus		
	communicated I	oetween instan		nonont				
	a) Nodec) Signal		d) Inte	nponent				
٦١	-		,					
7)	When a class pathat it plays in the	-		ation, it n	ias a	specific		
	a) role			lent	d) t	eacher		
8)	·	•	•		•			
U)		Aggregation is specified by adorning a plain association with at the <i>whole</i> end.						
	a) ⊙	h) □	c) A		d) (\wedge		
	u, o	b) L	٥, ۵		α, (V		
9)		•	etween a	a general	lthing	g and a more specific		
	kind of that thing	9	b) Generalisation					
	a) Dependencyc) Association		•					
10)	•		,					
10)	Which two char i) primitives	actenstics do a	ii object	s nave?				
	ii) state and be	havior						
	iii) state and be	ilavioi						
	iv) a unique ide	otity						
	a) i) and ii)	•	c) ii) ai	nd iv)	را (J) and iv)		
			() II) a	iid iv)	u) i,	, and iv,		
	ite whether true /							
1)	The UML is a vis	sual programm	ng langi	uage.				
2)	Single inheritan a child may hav			ariation (of ger	neralization in which		
3)	Sequence diagonal ordering of mes		ction dia	gram tha	at em	phasizes the time		
4)	Nodes represer	nt the physical c	leployme	ent of cor	mpor	nents.		

2.	A) Write short notes on the following : i) Stereotypes ii) Association.	8
	B) Answer the following :i) What are different aims that are achieved through modeling ?ii) Where can the UML be used ?	6
3.	Answer the following:	
	a) There are two different types of interaction diagrams: sequence and collaboration diagrams. Compare the two types of diagrams. What are the key differences between those diagram types considering their characteristics and their application?	8
	 b) What diagram type(s) can be used to describe the following: Specialization of user roles and their interactions with a system. Organization of a large amount of classes. Life-cycle dependencies of objects. 	6
4.	Answer the following:	
	a) Explain object diagram with example.	7
	 b) What is association? Describe the navigation, visibility and qualification properties with example. 	7
5.	Answer the following:	
	a) Describe interface, types and roles with example.	6
	 b) What is forward engineering? What are the steps involved in forward engineering of class diagram? Give example. 	8
6.	Answer the following:	
	 a) What are the classes required for Order Processing System? Show the details of relationships among these classes using class diagram. 	8
	 b) What is the purpose of a deployment diagram? Differentiate nodes and components. 	6
7.	Answer the following:	
	a) Describe use cases that a Restaurant provides to the customers. Draw the Use Case Diagram of the same.	8
	b) Describe State machines. What are the different parts of a state?	6

SLR-CP - 195

Seat	
No.	

M.Sc. – I (Semester – II) Examination, 2015

		SCIENCE (Old) Paper – VIII)	
•	Date : Thursday, 23-4-2015 .00 a.m. to 2.00 p.m.		Max. Marks: 70
Ins	,	and 2 are compulsory . Juestions from Q. No. 3 to Q. I J ight indicate full marks.	No. 7.
1. A) Cł	noose correct alternatives :		10
1)	The view of total database conf	tent is	
	A) Conceptual view	B) Internal view	
	C) External view	D) Physical view	
2)	DML is provided for		
	A) Description of logical structu	ıre of database	
	B) Addition of new structures in	n the database system	
	C) Manipulation and processing	g of database	
	D) Definition of physical structu	ire of database system	
3)	'AS' clause is used in SQL for _		
	A) Selection operation	B) Rename operation	
	C) Join operation	D) Projection operation	
4)	Architecture of the database ca	an be viewed as	
	A) two levels	B) four levels	
	C) three levels	D) one level	
5)	An entity set that does not have is a	e sufficient attributes to form a	a primary key
	A) strong entity set	B) weak entity set	
	C) simple entity set	D) primary entity set	

	6)	In a hierarchical model	records	are organized	l as	
		A) Graph B) List		C) Links	D) Tree	
	7)	The property/properties	of a dat	tabase is/are _		
		A) It is an integrated co	llection	of logically re	ated records	
		B) It consolidates separ	ate files	s into a comm	on pool of data records	
		C) Data stored in a data using it	abase is	independent	of the application programs	
		D) All of the above				
	8)	The statement in SQL	which a	llows to chan	ge the definition of a table is	
		A) Alter B) Upo	date	C) Create	D) Select	
	9)	E-R model uses		symbol to r	epresent weak entity set.	
		A) Dotted rectangle		B) Diamond		
		C) Doubly outlined recta	ıngle	D) None of the	nese	
	10)	Relational Algebra is				
		A) Data definition langua	age	B) Meta lang	uage	
		C) Procedural query lan	guage	D) None of the	ne above	
	B) St	ate true or false :				4
	1)	A composite index is sir table.	nply an	index based o	n more than one column in a	
	2)	Union set operator per duplicate rows shown.	forms a	all rows from	both select statements with	
	3)	Network model is base	d on the	tree like stru	cture with many roots.	
	4)	Data constitutes the bu	ilding bl	ocks of inform	nation.	
2.	A) W	rite short notes on :				8
	i)	Users of DBMS				
	ii)	Views.				
	B) Ar	nswer the following :				6
	i)	Explain specialization				
	ii)	Explain three level arch	itecture	of DBMS.		

3.	Answer the following:	14
	A) Explain the following relational algebra –	
	Select, Project, Union, Cartesian product, Intersect.	
	B) What is normalization? Explain 1 st , 2 nd and 3 rd normal form in detail.	
4.	Answer the following:	14
	A) Explain ACID properties in detail.	
	B) Explain database architecture in detail.	
5.	Answer the following:	14
	A) Explain client-server architecture in detail. Specify its advantages.	
	B) Explain locking methods in detail.	
6.	Answer the following:	14
	A) Explain the steps in query processing.	
	B) What is exception? Specify its types and explain with example.	
7.	Answer the following:	14
	A) Explain log-based recovery in detail.	
	B) Explain group by clause and order by clause in detail with example.	

-3-

Seat	
No.	

M.Sc. – II (Semester – III) (Computer Science) Examination, 2015 JAVA PROGRAMMING (Paper – IX)

Time: 3.00 p.m. to 6.00 p.m.	
Instructions: 1) Question No. 1 and 2 are compulsory. 2) Attempt any 3 questions from Q. No. 3 to Q. No. 3) Figures to the right indicate full marks.	o . 7 .
1. A) Choose the correct alternatives :	10
I) Which will legally declare, construct and initialize an array?	
A) int [] myList = {"1", "2", "3"}; B) int [] myList = (5, 8,	2);
C) int myList [] [] = $(4, 9, 7, 0)$; D) int myList [] = $\{4, 3, 1\}$	7};
II) A compiler converts the Java program into an intermediate representation called	e language\
A) Bytecode B) Byte	
C) Byteclass D) Bytejava	
III) A collection of methods with no implementation is called an	
A) Polymorphism B) Inheritance	
C) Interface D) Data Binding	
IV) Which of the following is not a wrapper class?	
A) Vector B) Character	
C) Boolean D) Integer	
V) Theclass creates and maintains a buffer for an in	put stream.
A) Common Buffered Input Stream B) Buffered Stream	
C) Input Stream D) Buffered Input Stream	ım
VI) Which of the following is not a Exceptions in Java?	
A) Arithmetic Exception B) Nullpointer Exception	n
C) Arrayout of Bounds Exception D) Logical Exception	

	VII)		hich of the following is verriding methods?	WRONG state	ement with r	espect to rules for	
		A)	The method name and that of the superclass m		rguments sh	ould be identical to	
		B)	The return type of both	the methods r	must be the d	ifferent	
		C)	The overriding method overrides	cannot be les	ss accessible	than the method it	
		D)	An overriding method ca by the superclass	annot raise mo	ore exception	s than those raised	
	VIII)	Th	ne class at the top of the ex	ception class	es hierarchy is	s called	
		A)	Common	B)	Throwable		
		C)	NULL	D)	Catch		
	IX)	W	hich of the following is no	t a Looping st	atement		
		A)	FOR B) Swi	tch C)	While	D) Do-while	
	X)		$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	y of an Java	application to	o perform multiple	
		A)	Multiprogramming	B)	Multithreadin	ng	
		C)	Multiprocessing	D)	Multitasking		
	B) Sta	te t	rue/false :				4
	i)		I binary operators excep om Left to Right.	t for the assig	nment opera	tors are evaluated	
	ii)	Ga	arbage collection is manı	ual process.			
	iii)		an instance method or a ject.	constructor, "	this" is a refer	ence to the current	
	iv)		ssignment operator is eva	aluated Left to) Right		
	.,	,			,g		
2.	-		short notes on the followi	ng:			8
	,		eatures of Java				
	ii)	Or	ne, two dimensional arra	ys and array o	of objects.		
	B) An	SW	er the following :				6
	i)	Ex	xplain difference betweer	n classes and	objects with	example.	
	ii)		cplain why main function buble. Character?	n Java contai	ns string arg[] not Integer, Float,	

3.	Answer the following:	14
	A) What is thread? Explain thread synchronization with example.	
	B) WAP for creating custom Exception Age Wise?	
	i) AgeMinorException (Age 1-18)	
	ii) AgeMajorException (Age-18-99).	
4.	Answer the following:	14
	A) Explain static variable method, block with example.	
	B) WAP to copy contents of one file to another file using Data Input Stream and Data Output Stream classes.	
5.	Answer the following:	14
	 A) WAP demonstrating same class name in 2 different package with different definition and using both the classes in one program. (Ex.P1 → Student class taking personal information of student and P2 → Student class taking academic information of student). 	
	B) What is interface? Explain how to achieve multiple inheritance in Java.	
•		4 4
б.	Answer the following:	14
	A) What is Serialization? Explain how to achieve serialization in Java.	
	 B) WAP for string manipulations as i) Read 5 strings and search a string using Command Line Arguments. ii) Sorting strings with case iii) Sorting strings ignoring case iv) String starting with a given letter. 	
7.	Answer the following:	14
	A) Differentiate JDBC and ODBC. Explain different types of JDBC drivers.	
	B) Assume that there is a table named as student in MS-Access with the following fields: empid, ename, eaddress, salary, eph_no. Write a java program to insert and then display the records of the table using JDBC.	

Seat	
No.	

M.Sc. (Part – II) (Semester – III) Examination, 2015 COMPUTER SCIENCE (Paper – X) Artificial Intelligence

-	Date : Friday, 17-4-2015 0 p.m. to 6.00 p.m.		Max. Marks : 70
Ins	,	nd 2 are compulsory . uestions from Q. No. 3 to Q. N ght indicate full marks.	Vo. 7.
1. A) Ch	noose correct alternatives :		10
1)	The process of solving the proble	em can usefully be modeled as	
	a) semantic analysis	b) generate and test	
	c) production system	d) none of these	
2)	A is a flat are neighboring states have the sar	•	whole set of
	a) Local maximum	b) Plateau	
	c) Back track	d) None of these	
3)	A is one in wl which that knowledge is to be p		ut the use to
	a) Inferential representation	b) Declarative representatio	n
	c) procedural representation	d) None of these	
4)	The conjunction connective of tas	he form "m conjunction n" can	be declared
	a) $m \rightarrow n$	b) m $_{\wedge}$ n	
	c) m \vee n	d) $m \rightarrow >n$	
5)	A is a measure is described by the antecedent		
	a) set of propositions		
	c) certainty factor	d) hill climbing	

Seat	
No.	

M.Sc. (Part - II) (Semester - III) Examination, 2015

		ER SCIENCE Mobile Computing	
Day and Date: Monday, 2 Time: 3.00 p.m. to 6.00 p			Total Marks : 70
2)	Attempt any 3 q	and 2 are compulsory . uestions from Q. No. 3 to ght indicate full marks.) Q. No. 7 .
1. A) Choose correct a	Iternatives :		10
	the roof of a car, as Marconi anter	the length of nna.	_ is efficient. This
a) λ/2		b) λ/4	
c) λ/6		d) λ/8	
must synchro can be done u	nize in Frequencesing a PSK	o receive signals correct by and phase with the tr b) Band pass filters d) Phase lock loop	-
a) Cells	_	e basis for SDMA algorit b) Sectorized antennas d) Space Division Duple	
transmits voic a) Forward Err b) Voice Accel c) Comfort noi	ce data only wher ror Correction (FE leration Control (\)	VAC)	, which
v) Signalling Sys a) BSC and MS c) MSC to MS	SC	is used for signaling betw b) BTS and BSC d) MS and BTS	reen

2.

vi)	In IEEE 802.11 wireless LAN, and encoding/decoding of signa	sub layer handles modulation al.	l
	a) PLCP	b) PWD	
	c) CCA	d) PHY Management	
vii)	Which of the following is not fur a) Management Information Bas b) Roaming c) Provide carrier sense signal d) Support association and re-a		
viii)	Which of the following is the po	essibility of location of COA?	
	a) Home Agent COA	,	
	c) Correspondent COA	•	
IX)	n Transaction-oriented TCP, to need packets a	or transmission of only one packet, it may altogether.	,
	a) 3	b) 5	
	c) 7	d) 9	
x)	MAC sub layer is the part of		
	a) Physical Layerc) Logical link control	b) Data link layerd) Access control mechanism	
B) Sta	ate true/false	a) Access control mechanism	4
,	Real antennas are isotropic rac	liatore	7
,	•		
-	An example of implicit reservat		
•	2.4 GHz ISM is license free bar		
IV)	All active devices in piconet as	signed a 48-bit address.	
A) Wr	ite short notes on the following :	(4+4)
i)	Reservation TDMA.		
ii)	Roaming.		
B) An	swer the following :	(3+3)
i)	Explain Transmission/Time-out	freezing.	
ii)	Explain Authentication in GSM.		

3. Answer the following:

(7+7)

- A) What are the disadvantages of using small cells in cellular system? Explain different channel Allocation schemes in cellular system.
- B) Explain the client initialization mechanism in dynamic host configuration protocol.

4. Answer the following:

(7+7)

- A) What is the problem of hidden and exposed terminals? Explain how MACA protocol is used to solve it.
- B) What is handover? Why it is essential? Explain different types of handovers with the help of diagram.

5. Answer the following:

(7+7)

- A) Draw and explain the format of an IEEE 802.11 PHY frame format using direct sequence spread spectrum.
- B) Explain indirect TCP and snooping TCP in detail.

Answer the following :

(7+7)

- A) Explain different components and entities involved in the network and switching sub-system and operating sub-system of GSM.
- B) Explain the synchronization beacon transmission in IEEE 802.11 infrastructure network and Ad-hoc network.

7. Answer the following:

(7+7)

- A) What do you mean by spread spectrum? Explain its significance as resistance to narrowband interference using the diagrams for spreading and de-spreading of signal.
- B) Explain the congestion control, slow start and fast recovery mechanism in traditional TCP.

SLR-CP - 199

Seat	
No.	

M.Sc. (Part – II) (Semestei COMPUTER SCIEI	NCE (Paper – XII)
Modeling and	Simulation
Day and Date: Wednesday, 22-4-2015	Total Marks : 70
Time: 3.00 p.m. to 6.00 p.m.	
Instructions: 1) Question No. 1 a 2) Attempt any thro 3) Figures to right	ee questions from Q. 3 to Q. 7.
1. A) Select the correct alternative.	10
i) The slack for an activity in networ	k is equal to
a) LS-ES b) LF-LS	c) EF-ES d) EF-LS
ii) If small orders are placed frequer	tly, then total inventory cost is
a) Reduced	b) Increased
c) Either reduced nor increased	d) Minimized
iii) Simulation is	
a) Descriptive in nature	
b) Useful to analyze problem wh	ere analytical solution is difficult
c) A statistical experiments as su errors	ich as its results are subject to statistical
d) All of the above	
iv) Repetition of n independent Berno	oulli trails reduced to
a) Poisson distribution	b) Binomial distribution
c) Geometric distribution	d) Hypergeometric distribution
v) Simulation of system in which the called	state changes smoothly with time are
a) Continuous system	b) Discrete system
c) Deterministic system	d) Probabilistic system

	vi)		-	ch can be delay eding activity is c		fecting the execution of	
		•	Total float	floot	b) Free float		
		-	-	float	·		
	vii)			•		stomer arrival rate and μ erver being busy is equal	
		a)	$\frac{\lambda}{\mu}$	b) $\frac{\lambda}{\mu - \lambda}$	c) $\frac{\mu}{\mu - \lambda}$	d) $\frac{\mu}{\lambda}$	
	viii)		rkov chain sai odic.	d to be ergodic	chain if	of whose states are	
		a)	One	b) Some	c) All	d) None	
	ix)	_	lueue model c last symbol 'e		ied in the sym	bolic form (a/b/c/) : (d/e),	
		-	-	scipline on of arrival	-	er of servers oution of departure	
	x)			_	-	stays in the system until called customer.	
		a)	a regular	b) an irregular	c) a patient	d) an impatient	
	B) Fill	in t	he blanks.				4
	i)	In E	OQ problem,	minimum total co	ost occurs at a	point where the ordering	
		cos	t and	_cost are equal.			
	ii)	The	e long form of C	CPM is	·		
	iii)	Cha	apman-Kolmo	gorov equation is	$sP_{ij}(t+T) = _{}$		
	iv)	In ir	nventory mode	l, the number of u	nit required pe	r period is called	
2.	, ,				•	Poisson process with rate am, then what is	
				actly one custom	-		3
	•		•	n by movement ir			3
			•	e Chapman-Kolr	nogorov equat	ion.	4
	ii)	Writ	e note on simu	ulation.			4

7

B) Explain pure birth process.

3.	A)	Differentia	ıte betv	ween F	PERT	and CP	M.				7
	B)	Explain the	genera	ation of	random	sampl	e from o	continu	ous uni	form distribution.	7
4	A)	Explain th inventorie		ept of	invent	ory co	ntrol. V	Vrite a	ny fou	r reasons for carrying	7
	 B) The demand rate for a particular item is 12000 units/ year. The ordering cost of Rs. 1,000 per order and the holding cost is Rs. 0.80 per month. If no shortage are allowed and the replacement is instantaneous the determine i) Economic order quantity ii) Number of order per year. 					7					
5.	A)	For variou completio		-	-	ticular	projec	t the e	expecte	ed time (in days) of	7
		Activity	0 –1	1 – 3	1 – 2	2 – 3	1 – 4	3 – 4	4 – 5		
		Duration	3	16	6	8	10	5	3		
	Draw a network diagram and identify the critical path. B) Write steps in of Monte-Carlo simulation technique. 7					7					
6.	A)	Generate	the fiv	e succ	cessiv	e rand	om nu	mber 2	X _i , i = ⁻	1, 2, 3, 4, 5 by using	
	$X_{i+1} = X_i^*a$ (modulo m), starting with seed $X_0 = 3$ and parameters $a = 7$ and										
		m = 15 (w the remind				the nu	mber {	X _i *a} is	s divid	ed by m repeatedly till	7
	B)	Define pro time, and	-		-			-		art time, latest start n.	7
7.	A)	Define sim	nulatio	n. Writ	e the a	dvanta	ages a	nd limi	tations	s of simulation.	7

Seat	
No.	

M.Sc. (Part – II) (Semester – IV) Examination, 2015 COMPUTER SCIENCE (Paper – XIII) Distributed Operating Systems

Distributed Op	perating Systems
Day and Date : Thursday, 16-4-2015 Time : 3.00 p.m. to 6.00 p.m.	Max. Marks : 70
Instructions: I) Q. 1 and Q. 2 are II) Attempt any thre III) Figures to right in	e questions from Q. 3 to Q. 7 .
1. A) Choose the correct alternative :	10
1) A is a standa and meaning of the messages	ard rules that govern the format, contents sent and received.
a) Session semantics	b) Protocols
c) Application Software	d) Pipes
2) Packing parameters into a mes	sage is called
a) Message Packing	b) Parameter Passing
c) Message Formatting	d) Parameter Marshalling
The property happens completely or not at a	ensures that each transaction either II.
a) Isolated b) Consistent	c) Atomic d) Durable
 The thread is created spontaneon to as a 	ously to handle an incoming RPC is referred
a) Parent thread	b) Push-down thread
c) RPC thread	d) Pop-up thread
5) If the workstations are implemented by one or more re	-
a) Diskless	b) Idle workstation
c) Disk full	d) Multiprocessor

B)

6)	When a process is created to be stays there until it terminates; su		ce placed on machine, the process an allocation is called as	
	a) Migratory allocation	b)	Replication allocation	
	c) Non-migratory allocation	-	•	
7)		as	sociate with each file a list of users	
	a) Capability		Access control list	
	c) Upload model	•	Data server	
8)	, .	,	, or even hundreds, of machines within	
Ο,		า พล	ay that amounts of information can be	
	a) Wide Area Networks			
	b) Landscape Area Networks			
	c) Infrastructure Public Networks	6		
	d) Local Area Networks			
9)		-	y, the system is free to make additional on its own without the users noticing.	
	a) Concurrent	b)	Copying	
	c) Replication	d)	Remote to File Access	
10)			which at least one resource must be s, only one process at a time can use	
	the resource.			
	a) Resource Sharing	b)	Mutual exclusion	
	c) Clock synchronization	d)	Process Election	
Sta	ate True/False :			4
1)	If send is blocking it returns cont message is sent.	rol	to the caller immediately, before the	
2)			address is sent that to be delivered to is called multicasting addressing.	
3)	A single thread model to constru parallelism and having blocking		server can be characterized with no tem calls.	
4)	Protection refers to a mechanism		r controlling the access of programs,	

2.	 A) Write a short note: i) Data Link Layer ii) Berkeley Algorithm. B) Answer the following: i) What do you mean by Peer and Hierarchical group? ii) Define the term virtual memory. 	6
3.	Answer the following:	
	A) Differentiate between MS-windows NT and Novel Netware.	7
	B) What do you mean by File Server? Describe in detail the Remote Access Model and Upload/Download model.	7
4.	Answer the following:	
	A) Enlist the System Model. State and Explain in detail the Processor Pool Model	l. 7
	B) Define Remote Procedure Call. Discuss in detail mechanism involved for sending calls and messages as Remote Procedure call.	7
5.	Answer the following:	
	A) Define Threads. Discuss in detail three organizations of threads in a process as a part of Thread usage.	7
	B) Define the term Clock Synchronization. Discuss Centralized algorithm for Mutual Exclusion.	7
6.	Answer the following:	
	A) Define the term Distributed Operating Systems. Discuss in detail its advantages and Disadvantages.	7
	B) Define term Deadlock. Explain in detail Centralized and Distributed Deadlock Detection algorithm.	7
7.	Answer the following:	
	A) Define the term Logical Clocks. Discuss in detail Lamport's Algorithm for the clock correction.	7
	B) What do you mean by Election Algorithm? Explain in detail Bully Election Algorithm.	7

SLR-CP - 201

Seat	
No.	

M.Sc. – II (Semester – IV) (Computer Science) Examination, 2015 DATA MINING AND WAREHOUSE (Paper – XIV)

	(
Day and Date : Saturday, 18-4-2015 Time : 3.00 p.m. to 6.00 p.m.	Total Marks : 70
Instructions: 1) Question No. 1 and 2 2) Attempt any 3 question 3) Figures to the right in	ons from Q. No. 3 to Q. No. 7 .
1. A) Choose correct alternatives :	10
1) Which of the following features usually	applies to data in a data warehouse?
a) Data are often deleted	
b) Most applications consist of trans	sactions
c) Data are rarely deleted	
d) Relatively few records are proces	ssed by applications
Which of the following schema conta	nins multiple fact tables ?
a) Star	b) Snowflake
c) Fact constellation	d) None of the above
The basic algorithm for decision tree	induction is a algorithm.
a) Step-Step	b) Procedural
c) Greedy	d) None of the above
The priori algorithm operates in a bot	tom up and method.
a) First Search	b) Depth Search
c) Breadth Search	d) Unidirectional Search
5) Data mining is used to aid in	
 a) operational management 	
b) analyzing past decision made by	managers
c) detecting patterns in operational of	data
d) retrieving archival data	

6) A star schema has what type of relationship between a dimension and fact

	table?		
	a) Many-to-many	b) One-to-one	
	c) One-to-many	d) All of the above	
7)	Transient data is		
	a) Data in which changes to existing of the records to be eliminated	g records cause the previous version	
	b) Data in which changes to existin version of the records to be eliminated by the control of the records to be eliminated by the changes are control of the changes to exist the changes the chang	g records do not cause the previous nated	
	c) Data that are never altered or del	eted once they have been added	
	d) Data that are never deleted once	they have been added	
8)	The generic two-level data warehous following?	se architecture includes which of the	
	a) At least one data mart		
	b) Data that can extracted from num	nerous internal and external sources	
	c) Near real-time updates		
	d) All of the above		
9)	Classification accuracy is		
	a) A subdivision of a set into number	er of classes	
	b) Measure of the accuracy, of the given by theory	classification of a concept that is	
	c) The task of assigning a classifica	ation to set	
	d) None of the above		
10)	which converts da	ta from legacy or host format to	
	warehouse format.		
	a) Data transformation	b) Data cleaning	
	c) Data extraction	d) Load data	
B) Fi	ll in the blanks :		4
1)	A is a set of views over	r operational databases.	
2)	The roll-up operation is also called		
3)	means that, once entered in change.		
4)	1 terabyte (T/TB) = 2 ^ byt	es.	

2.	A) Write short notes on the following:	8
	i) Data mining primitives	
	ii) Data reduction.	
	B) Answer the following:	6
	 i) Write the preprocessing steps that may be applied to the data for classification and prediction. 	
	ii) What is data integration? Explain issues to consider during data integration.	
3.	Answer the following:	
	A) Explain the various data mining applications.	7
	B) State and explain the steps in back propagation algorithm.	7
4.	Answer the following:	
	A) Describe data warehouse architecture with well labeled diagram.	8
	B) What are metadata? Explain metadata repository.	6
5.	Answer the following:	
	A) What is cluster analysis? Explain agglomerative and divisive hierarchical clustering.	8
	B) What is meant by multi level association rule? Discuss any two approaches for mining multi-level association rules with examples.	6
6.	Answer the following:	
	A) What are Bayesian classifiers? Explain Naïve Bayesian classifier.	7
	B) Describe the k-medoid algorithm.	7
7.	Answer the following:	
	A) Explain OLAP operations in the multidimensional data model.	7
	B) Explain new trends in data mining.	7

Seat	
No.	

M.Sc. – II (Semester – IV) (Computer Science) Examination, 2015 DIGITAL IMAGE PROCESSING (Paper – XV)

	DIGITA	L IMAGE PI	ROCESSING	(Paper – XV)			
Day and Date: Tuesday, 21-4-2015 Time: 3.00 p.m. to 6.00 p.m.					Max. Marks :	70	
Ins	,	Attempt any 3		n Q. No. 3 to Q.	No. 7.		
1. A) Ch	oose correct al	ternatives.				10	
1)	Computerized	axial tomograp	ohy works base	ed on			
	a) Gamma ray	S	b) X-rays				
	c) Ultra violet ı	ays	d) Infra red	d) Infra red rays			
2)	An image of siz bytes of storag	•	s formed with 64	l gray levels need	l		
	a) 12800	b) 1600	c) 1200	d) 150			
3)	The D ₈ distance	e between (10), 5) and (6, 8) i	s			
	a) 7	b) 4	c) 5	d) 1			
4)	Median filter yi	elds good resu	ılt for				
	a) Gaussian no	oise	b) Uniform	noise			
	c) Impulse nois	se	d) Exponen				
5)	Which of the fol	lowing stateme	ent is false for th	e Fourier transfo	rmed image?		
	a) Average gra image	y level of inpu	t image is foun	d at origin of trar	nsformed		
	b) Symmetric f	ilters are used	for filtering in f	frequency doma	in		
	c) To extract e	c) To extract edges high pass filter is used					
	d) Frequency of spatial domain		are better for n	oise removal as	compared to		

6) The adaptive, local noise reduction filter is given by $\hat{f}(x, y) = \underline{\hspace{1cm}}$

a)
$$g(x, y) - \frac{\sigma_L^2}{\sigma_n^2} [g(x, y) - m_L]$$
 b) $g(x, y) - \frac{\sigma_n^2}{\sigma_L^2} [g(x, y) - m_L]$

b)
$$g(x, y) - \frac{\sigma_n^2}{\sigma_1^2} [g(x, y) - m_L]$$

c)
$$g(x, y) - \frac{\sigma_L^2}{\sigma_R^2} [m_L - g(x, y)]$$

c)
$$g(x, y) - \frac{\sigma_L^2}{\sigma_n^2} [m_L - g(x, y)]$$
 d) $g(x, y) - \frac{\sigma_n^2}{\sigma_L^2} [m_L - g(x, y)]$

7) Morphological hit-or-miss transform is a tool for	
--	--

- a) Object detection
- b) Shape detection
- c) Size detection
- d) Orientation detection

8)	Thresholding is used to segment an image into	
\sim	Trinoonolaing io acca to cogment arrimage into	

- a) Two regions only
- b) Three regions only
- c) Two or three regions
- d) Any number of regions

9)	The four	directional	chain co	de of an	object is	0003232121.	Its shape
	number is	S					

a) 0003313313

b) 0003133133

c) 0033133131

- d) 0033133133
- 10) If two objects are similar then the measure of similarity between these two objects is _____
 - a) 0
- b) 1 c) very large value
- d) Infinity

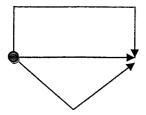
B) Fill in the blanks:

- 1) The $N_D(p)$ of a pixel p(x, y) are given by _____
- 2) Second order derivative of a ramp edge region is _____
- 3) Gaussian band reject filter is given by _____
- 4) A region contains 5 faces, 3 holes, 4 vertices and 2 connected components. The total edges are _____

2. A) Write short notes on the following:

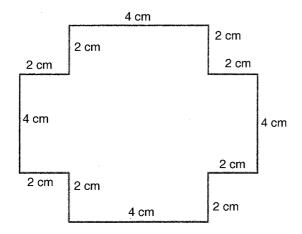
8

- i) Expression of one dimensional Fourier transform in polar coordinate system.
- ii) Give PDF of Rayleigh noise and its uses.


B) Answer the following:

6

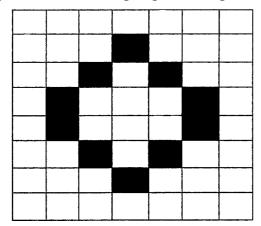
i) Find the shortest digital path between P and Q using m-adjacency.


1	0	0	1	1	0	1
1	1	0	0	1	1	0
0	1	1	1	0	1	Q
0	1	0	0	1	1	0
1	1	0	1	1	0	1
1	0	1	1	0	1	0
Р	1	0	1	0	0	1

ii) Use the specific primitives a, b, c and d given as \searrow , \nearrow , \longrightarrow and \downarrow respectively and build the following structure :

3. Answer the following:

- A) Explain the process of digitizing the intensity and coordinate values of an image.
- B) Perform closing of following structure using a circle of 1 cm radius :



4. Answer the following:

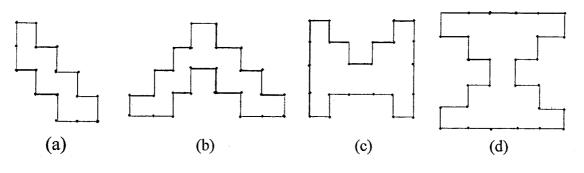
14

- A) What is the role of histogram in contrast stretching? Discuss.
- B) Fill the following region using morphological region filling algorithm.

5. Answer the following:

14

- A) Describe smoothing frequency domain filters. Also give their comparison.
- B) Compute the covariance matrix for the following vectors:


$$(1, 1, 0, 0)^T$$
, $(1, 0, 1, 1)^T$, $(0, 1, 1, 0)^T$ and $(1, 0, 0, 1)^T$.

6. Answer the following:

14

- A) Derive illumination and reflectance functions using Homomorphic filtering.
- B) The two classes of objects denoted by ω_1 and ω_2 have sample mean vectors $m_1 = (4, 9, 5)$ and $m_2 = (1, 6, 2)$ respectively. Compute decision boundary between these two objects.
- 7. Answer the following:

- A) Write algorithm for basic global thresholding.
- B) Compute the distances between following objects and find out which of them are nearest:

Seat	
No.	

M.Sc. – II (Semester – IV) Examination, 2015 COMPUTER SCIENCE .Net (Paper – XVI)

		.Net (Paper			
-	Date : Thursday, 2 0 p.m. to 6.00 p.r			Total Marks :	70
Ins	2) A	. 1 and Q. 2 are con ttempt any 3 questi igures to the right in	ons from Q. 3 to C		
1. a) Ch	noose the correct	alternative :			10
1)	a) System is nob) Nested namec) Nested name	lowing statement is of a root namespace espaces are not allo espaces are allowed a root namespace	wed	amespace ?	
2)	Which of the fol	lowing control is alw	ays read-only?		
	a) TextBox	b) Label	c) ComboBox	d) RichTextBox	
3)	Central to the .N as	et framework is the r -	runtime execution	environment known	
	a) JIT	b) CTS	c) CLR	d) CLS	
4)	p	roperty checked to I	know that is the pa	age posted back.	
	a) PostBack	b) Post	c) BackPost	d) IsPostBack	
5)	The scope of a	variable refers to			
	a) the length of	the variable	b) the name of	the variable	
	c) the accessib	ility of the variable	d) the data type	e of the variable	
6)	are	used to implement e	event handling me	chanism.	
	a) Indexers		b) Delegates		
	c) Properties		d) All of these		

		7)	is the folder that contains	W	eb applications in a web server.	
			a) Root Folder	b)	Web Folder	
			c) Virtual Folder	d)	Program Folder	
		8)	The directive is the instruction with the various attributes available to		. •	
			a) @Page	b)	@Cache	
			c) @Response	d)	@ Control	
		9)	The control has a in-built sthe data.	up	port for Sort, Filter and paging	
			a) FormView	b)	ListView	
			c) TabView	d)	GridView	
		10)	The provides set of type and ensures .NET language type con			
			a) Common Type System			
			b) Common Language Type			
			c) Common Type Language			
			d) Common System Type			
	b)	Sta	ate whether true or false :			4
		1)	The files with .aspx extension are glo	oal	applications.	
		2)	The runat="server" attribute is manda	ιtο	ry for the Server Controls.	
		3)	The RequiredFieldValidator control al a field against another field.	lov	vs comparing a value entered into	
		4)	The DataSet can contain multiple table	es		
2.	a)	Wr	rite short note on :			8
		1)	Reflection			
		2)	Different Services provided by CLR.			
	b)	An	swer the following:			6
	-	1)	Differentiate between DataReader and	d b	eataAdapter.	
		2)	Give the advantages of ASP.Net.		•	
		,	_			